Carbon Sequestration: Hydrogenation of CO2 to Formic Acid
نویسندگان
چکیده
منابع مشابه
Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media
The chemical transformation of carbon dioxide into useful products becomes increasingly important as CO2 levels in the atmosphere continue to rise as a consequence of human activities. In this article we describe the direct hydrogenation of CO2 into formic acid using a homogeneous ruthenium catalyst, in aqueous solution and in dimethyl sulphoxide (DMSO), without any additives. In water, at 40 °...
متن کاملHydrogenation of CO2 to Formic Acid with a Highly Active Ruthenium Acriphos Complex in DMSO and DMSO/Water
The novel [Ru(Acriphos)(PPh3 )(Cl)(PhCO2 )] [1; Acriphos=4,5-bis(diphenylphosphino)acridine] is an excellent precatalyst for the hydrogenation of CO2 to give formic acid in dimethyl sulfoxide (DMSO) and DMSO/H2 O without the need for amine bases as co-reagents. Turnover numbers (TONs) of up to 4200 and turnover frequencies (TOFs) of up to 260 h(-1) were achieved, thus rendering 1 one of the mos...
متن کاملChallenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes
The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of C...
متن کاملEfficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli
Hydrogen-dependent reduction of carbon dioxide to formic acid offers a promising route to greenhouse gas sequestration, carbon abatement technologies, hydrogen transport and storage, and the sustainable generation of renewable chemical feedstocks [1]. The most common approach to performing direct hydrogenation of CO2 to formate is to use chemical catalysts in homogeneous or heterogeneous reacti...
متن کاملRising atmospheric CO2 reduces sequestration of root-derived soil carbon.
Forests have a key role as carbon sinks, which could potentially mitigate the continuing increase in atmospheric carbon dioxide concentration and associated climate change. We show that carbon dioxide enrichment, although causing short-term growth stimulation in a range of European tree species, also leads to an increase in soil microbial respiration and a marked decline in sequestration of roo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Present Environment and Sustainable Development
سال: 2016
ISSN: 2284-7820
DOI: 10.1515/pesd-2016-0022